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Morphological scaling relationships between organ and body size—also known as allometries—describe the shape of a species,

and the evolution of such scaling relationships is central to the generation of morphological diversity. Despite extensive modeling

and empirical tests, however, the modes of selection that generate changes in scaling remain largely unknown. Here, we mathe-

matically model the evolution of the group-level scaling as an emergent property of individual-level variation in the developmental

mechanisms that regulate trait and body size. We show that these mechanisms generate a “cryptic individual scaling relationship”

unique to each genotype in a population, which determines body and trait size expressed by each individual, depending on

developmental nutrition. We find that populations may have identical population-level allometries but very different underly-

ing patterns of cryptic individual scaling relationships. Consequently, two populations with apparently the same morphological

scaling relationship may respond very differently to the same form of selection. By focusing on the developmental mechanisms

that regulate trait size and the patterns of cryptic individual scaling relationships they produce, our approach reveals the forms of

selection that should be most effective in altering morphological scaling, and directs researcher attention on the actual, hitherto

overlooked, targets of selection.
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Background
Morphological scaling–-the relationship between trait size and

body size among adults in a population–-is central to the expres-

sion and evolution of animal form. As growth varies in response

to environmental factors such as temperature or access to nutri-

tion, the developmental mechanisms that regulate scaling main-

tain proper size covariation among traits, and retain structural and

functional cohesion across a range of adult body sizes (Bertalanffy

1964; Gould 1966). Because morphological scaling describes the

relationship between trait size and overall body size, changes in

scaling result in changes in body shape. Unsurprisingly, there-

fore, scaling relationships can vary dramatically among species

or even within them, the latter most obvious in species exhibiting

high sexual dimorphism (Fairbairn 1997). Consequently, the evo-

lution of morphological scaling is the major mechanism by which

all morphological diversification occurs (Thompson 1917; Stern

and Emlen 1999).

Morphological scaling relationships fit to individuals of a

population (called a static allometry) are typically linear on a log–

log scale. Consequently, they can be described using the allometric

equation: log y = log b + α log x, where y and x are the size of

morphological traits, typically organ (y) and body (x) size, and α

is the allometric coefficient (Huxley and Tessier 1936). For many

traits α� 1, a condition called isometry, where the size of y relative
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to x is constant across all trait sizes. When α is > or < 1, called

hyper- and hypoallometry, respectively, the size of y relative to

x changes with overall size. Hyperallometric traits (α > 1) are

disproportionally large in large individuals and provide some of

the most striking examples of morphology, such as the oversized

claw of male fiddler crabs (Huxley 1932), the massive antlers of

the extinct Irish elk (Gould 1974), and the elongated eye-stalks of

stalk-eyed flies (Wilkinson 1997). Hypoallometric traits (α < 1)

are disproportionally smaller in large individuals and while less

dramatic, are still important biologically. Examples include brain

size in humans (Koh et al. 2005), and male genital size in most

insects and possibly mammals (Eberhard 2009). Change in log b,

the intercept of the allometry, reflects a proportional shift in the

size of y relative to x across the full range of trait sizes within a

population.

Although the central importance of morphological scaling in

generating morphological diversity has been recognized widely

for some time (Thompson 1917; Huxley 1932; Gould 1966),

an understanding of how selection alters scaling relationships

remains elusive. On the one hand, the slopes and intercept of

morphological scaling relationships show extensive evolutionary

variation, even among closely related taxa (Gould 1966; Wilkin-

son and Dodson 1997; Stern and Emlen 1999; Voje et al. 2014).

However, direct tests of the evolvability of scaling relationship

parameters have generated equivocal results. While the intercept

of morphological scaling relationships appear to respond rapidly

to artificial selection (Frankino et al. 2005; Egset et al. 2012;

Bolstad et al. 2015), the same is not true for the slope. There

are only three studies that have directly targeted the slope of a

morphological scaling relationship using artificial selection. The

response was absent in one (Egset et al. 2012) and weak in another

(Stillwell et al. 2016). In the third, the derived scaling did not hold

across the full range of body sizes displayed by a population ex-

periencing variation in access to nutrition (Bolstad et al. 2015), as

natural scaling patterns must. In all experiments, the response to

selection varied considerably among replicate lines and from gen-

eration to generation. Such an erratic response is consistent with

the general hypothesis that the slopes of morphological scaling

relationships are developmentally constrained and evolve slowly

at a macroevolutionary time scale (Huxley 1932; Gould 1966;

Voje and Hansen 2013; Pelabon et al. 2014; Voje et al. 2014).

In contrast, however, artificial selection on absolute or rela-

tive trait size has produced a correlated change in the slope of the

morphological scaling relationship in several species (Robertson

1962; Weber 1990; Wilkinson 1997; Tobler and Nijhout 2010).

Moreover, developmental-genetic manipulations of the develop-

mental mechanisms that regulate the relationship between organ

and body size easily change the slope of trait-body size scaling

(Tang et al. 2011; Shingleton and Tang 2012). The incongruity be-

tween the effects of direct selection on the slope of morphological

scaling relationships, versus the effects of indirect selection or de-

velopmental manipulation, demonstrates that our understanding

of how selection alters morphological scaling is inadequate.

Here, we use a fundamentally new approach to determine

how different modes of selection generate change in morphologi-

cal scaling. We model the population-level scaling relationship as

a consequence of variation in the individual-level developmental

processes that regulate trait and body growth. These processes

can be summarized as a few growth parameters that describe

how trait and body size covary for an individual genotype across

nutritional conditions, producing what we call the “cryptic indi-

vidual scaling relationship.” We use the term “cryptic” because

the individual scaling relationship is not observed. Rather, each

individual realizes only a single phenotypic point on its unique

individual scaling relationship; the location of this point is deter-

mined by access to nutrition during growth. The population-level

scaling relationship is therefore fit to a population of such single

realized points, each of which rests on its own cryptic individual

scaling relationship. Our model explicitly captures the range and

distribution of cryptic individual scaling relationships in a popu-

lation, thereby linking the population-level static allometry with

the individual-level variation in developmental mechanisms that

generate it. By applying an evolutionary algorithm to our model,

we are able to predict the selection response of the proximate de-

velopmental mechanisms that ultimately determine the slope and

intercept of a population’s static allometry in a manner that has

not been possible with more traditional approaches.

Model and Results
THE MODEL

Implicit to the concept of scaling is that there is variation in

body size that is accompanied by covariation in the size of other

traits. Perhaps the major factor that influences body size in most

animals is access to nutrition during development (Demment and

Van Soest 1985; Bateson et al. 2004; Koyama et al. 2013; Nijhout

et al. 2014), and for simplicity we model the evolution of scaling

relationships that are a consequence of nutritional variation, that is

nutritional scaling relationships or nutritional static allometries

(Shingleton et al. 2007). The developmental mechanisms that

regulate nutritional scaling relationships are best understood in

holometabolous insects, and our model is therefore derived from

an earlier one that describes body and organ growth in these taxa

(Shingleton et al. 2008).

In insects, growth of the body and organs is an approxi-

mately exponential process (Bakker 1959; Martin 1982; Bryant

and Levinson 1985; Nijhout et al. 2006) that can be modeled using

an exponential equation:

xt = aert , (1)
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where xt is the size of a trait at time t, r is the exponential growth

rate, and a is the initial trait size. In holometabolous insects,

nutrition affects trait size primarily by influencing growth rate,

which can therefore be divided into two components: intrinsic (or

morphogenetic) growth and nutrition-dependent growth (Truman

2006). Developmentally, nutrient-dependent growth is mediated

via the activity of the insulin-signaling pathway, which comprises

a number of positive and negative growth regulators that work

together to activate cell growth and proliferation when nutrition

is high and suppress it when nutrition is low (Teleman 2010).

Importantly, traits can differ in their sensitivities to changes in

insulin signaling, producing variation among traits in their growth

response to variation in access to nutrition during development

(Shingleton et al. 2005; Shingleton and Tang 2012). The growth

of a trait can therefore be modeled as:

xt = ae(Sk+i)t , (2)

where S is the systemic level of insulin-signaling an individual

generates in response to developmental nutrition and affects all

tissues, k is the level of a trait’s insulin-sensitivity, and i is the mor-

phogenetic growth rate, which we assume is organ-autonomous

(Truman 2006). S can be either positive or negative, such that

low nutrition reduces growth rate below the intrinsic rate while

high nutrition elevates it above the intrinsic rate. We can therefore

model final trait size as:

T = ae(Sk+i)d , (3)

where d is the duration of trait growth (Shingleton et al. 2008).

This can be log-transformed as:

log T = loga + log (Sk + i) d. (4)

Within an individual, two traits for the same individual may have

different insulin-sensitivities and different intrinsic growth rates

(Tang et al. 2011) but will share the same level of systemic insulin

signaling and duration of growth (Shingleton et al. 2008):

log T1 = log a1 + (Sk1 + i1) d, (5)

log T2 = log a2 + (Sk2 + i2) d, (6)

where T1 is the size of one trait, for example body size, and T2 is

the size of another trait, for example organ size. We can calculate

the allometric relationship between logT1 and logT2 across a range

of nutritional levels for a particular genotype by solving equation

(5) for S and inserting into equation (6).

log T2 = k2

k1
log T1 + log a2 − k2

k1
log a1 − k2

k1
i1d + i2d. (7)

This linear equation describes the genotype-specific cryptic

individual scaling relationship (indSR): that is, the scaling rela-

tionship that would result if individuals sharing that genotype were

reared under a range of nutritional conditions, for example rear-

ing flies from isogenic lines of Drosophila under different diets

(Shingleton et al. 2009). The allometric coefficient for the rela-

tionship between logT1 and logT2 is k2/k1: the relative insulin-

sensitivity of trait 2 versus trait 1. When k2 > k1, trait 2 will

be hyperallometric to trait 1. When k2 < k1, trait 2 will be hy-

poallometric to trait 1. It follows that changes in k2 relative to

k1 will alter the slope of a genotype’s individual scaling rela-

tionship (Fig. 1A and B). This is supported by developmental-

genetic studies in Drosophila where wing-autonomous changes

in insulin-sensitivity make the wing-body nutritional scaling re-

lationship more hyperallometric (Tang et al. 2011). The observed

population level scaling relationship (popSR) will result from fit-

ting an allometry to the phenotypes expressed by a population of

genetically unique individuals, each occupying a single point on

the their correspondingly unique indSR (Fig. 1C and D).

We used our model to generate a popSR using 1000 genet-

ically unique individuals, each possessing a unique indSR. To

reduce the number of model parameters, we assume that there is

no variation among individuals in developmental time (d = 1) and

that initial trait size is the same among individuals (a = 1). Note

that variation in a and d influences only the intercept but not the

slope of the allometry (eq. 7), and so these parameters are unim-

portant when considering evolution of the allometric coefficient.

The size of individual traits becomes:

log T1 = Sk1 + i1, (8)

log T2 = Sk2 + i2, (9)

and the allometric relationship between T1 and T2 becomes:

log T2 = k2

k1
log T1 − k2

k1
i1 + i2. (10)

To generate the static allometry for a population, we assign each

individual a genotypic value for k1, k2, i1, and i2. The value of these

parameters is determined by a “diallelic” system with codomi-

nance where each value is the sum of two “alleles,” a and b. For

example, an individual’s value for k1 is the sum of k1.a and k1.b .

The initial population contains a specified number of alleles, the

values of which are sampled from a normal distribution with a

known mean (μ) and standard deviation (σ) (e.g., N(μk1.a,σ2
k1.a),

N(μk1.b,σ2
k1.b), etc.). Alleles for the same parameter (k1, k2, i1,

and i2) are sampled from the same normal distribution. Conse-

quently, the μ and σ of the allelic values are half the μ and σ

of the genotypic value (e.g., μk1.a = μk1.b = ½ μk1). The result

is a population of individuals, each possessing its own cryptic
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Figure 1. Cryptic individual scaling relationships (indSRs) and population scaling relationships (popSRs). (A) For a particular genotype,

the slope of the nutritional individual scaling relationship (indSR) between trait size and body size will reflect the extent to which the

size of each responds to changes in the systemic level of insulin-signaling (k). (B) A change in a trait’s insulin-sensitivity will alter the

slope of the trait’s scaling relationship with body size. (C) Variation among individuals in trait insulin-sensitivity and intrinsic growth

rates generates variation in the slopes and intercepts of the indSRs (lines), although each genotype will express only a single point on its

cryptic indSR (filled circles). (D) The observed scaling relationship for a population (popSR) (filled circles, heavy black line) is comprised of

individuals occupying a single point on their cryptic indSRs (fine lines).

indSR. Finally, each individual is assigned a value of S, the level

of nutritionally regulated insulin signaling, again sampled from a

normal distribution with known mean (μS) and standard deviation

(σS) (N(μS,σ2
S)). The parameter S determines the phenotype ex-

pressed by each individual along it is cryptic indSR and describes

the effect of the nutritional environment on trait size. Fitting a

regression to the values for logT1 against logT2 for all individuals

in the population generates a population scaling relationship that

is distributed around the bivariate mean of the two trait distri-

butions (Fig. 1D). The expected bivariate mean and slope of the

popSR–whether estimated by ordinary least square (OLS), major

axis (MA), or standardized major axis (SMA)–can be calculated
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directly from the μ and σ of the parameter values, as described in

Supporting Information.

PATTERNS OF CRYPTIC INDIVIDUAL SCALING

RELATIONSHIPS

The bivariate mean of the popSR is (μi1 + μS μk1, μi2 + μS

μk2), which, when μS = 0, simplifies to (μi1,μi2) (see Support-

ing Information). If there is no variation in intrinsic growth rate

(σi1 and σi2 = 0), but variation in trait insulin-sensitivity (σk1 and

σk2 > 0), the model generates a pattern of cryptic indSRs that

intersect when S = 0, and rotate around (μi1,μi2) (Fig. 2A). As

σi1 and σi2 increase, this point of intersection between indSRs

becomes more variable, but the average point of intersection re-

mains � (μi1,μi2) (Fig. 2B). It follows that when μS = 0, that is

when individuals on average grow at their intrinsic growth rate,

the pattern of indSRs across the range of trait sizes observed in the

population rotates more-or-less around the bivariate mean of the

popSR (Fig. 2B). However, this is not the only possible pattern

of cryptic indSRs. It is possible that, because of the nutritional

environment experienced by members of a population, individu-

als grow on average faster or slower than their intrinsic rate and

μS � 0. Under these conditions the indSRs again rotate around

�(μi1,μi2i), but the bivariate mean of the popSR is now (μi1 +
μS μk1, μi2 + μS μk2): that is the pattern of indSRs no longer

rotates around the bivariate mean of the popSR. When μS > 0,

the point of indSR rotation lies more towards the origin than the

bivariate mean of the popSR (Fig. 2C). Conversely, when μS < 0

the point of indSR rotation is further away from the origin than

the bivariate mean of popSR (Fig. 2D). For simplicity, as short-

hand we reference real-world objects that move in a manner that

reflects these three patterns of cryptic indSRs: “seesaw” (μS = 0,

Fig. 2B), “speedometer” (μS > 0, Fig. 2C), and “broomstick” (μS

< 0, Fig. 2D). Critically, while the underlying pattern of cryptic

indSRs may be very different among populations, the covariance

of T1 and T2 may be the same, producing near-identical phenotype

distributions and indistinguishable popSRs with the same slope

and intercept (Fig. 2B’,C’,D’).

SELECTION REGIMES AND EVOLUTIONARY

ALGORITHM

Using our model (eqs. (8) and (9)), we generated three starting

populations of 1000 individuals: one where μS = 0 (seesaw), one

where μS > 0 (speedometer) and one where μS < 0 (broomstick).

All three populations contained 100 “alleles” each for k1, k2, i1,

and i2 (50 alleles for k1a, 50 alleles for k1b, 50 alleles for k2a, etc.).

These alleles were sampled from known normal distributions, as

were the values of S. The mean and standard deviations of these

normal distributions were chosen such that the resulting popSRs

in all three populations were statistically indistinguishable; the

relationship between logT1 and logT2 had the same slope (OLS,

MA, and SMA), and intercept in all three populations (Table 1).

Further, the parameter values were chosen so that the popSR

resembled the relationship between body size (pupal case area)

and wing size in a wild-type outbred population of Drosophila

(Stillwell et al. 2011).

We subjected each starting population to the forms of selec-

tion typically invoked to explain changes in morphological scaling

and asked how these influenced: (1) the slope and intercept of the

population static allometry; and (2) the mean and standard de-

viation of the developmental parameters (k1, k2, i1, and i2) that

underlie the population static allometry. The forms of selection

were (Fig. 3):

1. Positive (D+) or negative (D−) directional selection on T2

(Fig. 3A). Here, we selected individuals that had the highest

or lowest absolute value of T2.

2. Positive (P+) or negative (P−) proportional selection on

T2 (Fig. 3B). Here, we selected individuals that had the

highest or lowest value of T2 relative to T1.

3. Positive (C+) or negative (C−) correlational selection (Fig.

3C). For positive correlational selection we selected indi-

viduals that had a large T1 and disproportionately large T2

or had a small T1 and disproportionately small T2. For nega-

tive correlational selection we selected individuals that had

a large T1 and disproportionately small T2 or had a small

T1 and disproportionately large T2.

4. Stabilizing (St) selection on T2 (Fig. 3D). Here, we selected

individuals that had an intermediate value of T2 regardless

of their value of T1.

Specific details of the selection regimes are provided in Sup-

porting Information. These selection regimes all select on some

aspect of trait size. Under our model, however, relative insulin-

sensitivity k2/k1 is the biological factor that controls the slope of

the indSRs and accounts for the correlation between T1 and T2

in the population, which is in turn captured by the slope of the

popSR. We therefore applied a fifth form of selection (K) that

targeted an individual’s k2/k1, that is the slope of its indSR. This

selection regime is also detailed in Supporting Information.

To generate “offspring” in the model, selected individuals

are randomly designated as “male” or “female,” with equal prob-

ability. Offspring were generated by randomly sampling one male

and one female and randomly selecting one of the two “alleles”

for each parameter value from each parent. These parameter val-

ues are then assigned to each offspring along with a value for S

sampled from N(μS,σ2
S), simulating the effect of a random nu-

tritional environment on trait size. Collectively, these parameter

values are used to calculate offspring trait sizes. Each generation,

this process was repeated to generate a new population of 1000

individuals. All sampling of male and female parents was done

with replacement, so each parent can generate multiple offspring.

EVOLUTION AUGUST 2016 1 7 0 7



AUSTIN P. DREYER ET AL.

12.0 12.5 13.0 13.5 14.0 14.5 15.0

13
.0

13
.5

14
.0

14
.5

15
.0

log (size of T1)

log (size of T1)

log (size of T1)

log (size of T1) log (size of T1)

log (size of T1)

log (size of T1)

lo
g 

(s
iz

e 
of

 T
2)

lo
g 

(s
iz

e 
of

 T
2)

lo
g 

(s
iz

e 
of

 T
2)

lo
g 

(s
iz

e 
of

 T
2)

lo
g 

(s
iz

e 
of

 T
2)

lo
g 

(s
iz

e 
of

 T
2)

lo
g 

(s
iz

e 
of

 T
2)

12.0 12.5 13.0 13.5 14.0 14.5 15.0

13
.0

13
.5

14
.0

14
.5

15
.0

(µT1,µT2)

12.0 12.5 13.0 13.5 14.0 14.5 15.0

13
.0

13
.5

14
.0

14
.5

15
.0

(µT1,µT2)

(µT1,µT2)

12.0 12.5 13.0 13.5 14.0 14.5 15.0

13
.0

13
.5

14
.0

14
.5

15
.0

(µT1,µT2)

12.0 12.5 13.0 13.5 14.0 14.5 15.0

13
.0

13
.5

14
.0

14
.5

15
.0

12.0 12.5 13.0 13.5 14.0 14.5 15.0

13
.0

13
.5

14
.0

14
.5

15
.0

12.0 12.5 13.0 13.5 14.0 14.5 15.0

13
.0

13
.5

14
.0

14
.5

15
.0

B B'

C C'

D D'

A

Figure 2. Patterns of cryptic individual scaling relationships (indSRs). (A,A’) When µS = 0 and there is no variation in trait-autonomous

growth rate but variation in trait insulin-sensitivity, the indSRs (A) intersect at (µi1,µi2), which is the bivariate mean of the popSR (µT1,µT2).

Parameter values are sampled from: Nk1(1.8,0.122), Nk2(1.08,0.122), µi1 = 13.5, µi2 = 14. (B) When µS = 0 and there is variation in both

trait-autonomous growth rate and trait insulin-sensitivity, the indSRs do not intersect at a single point, but more-or-less rotate around

the bivariate mean of the popSR (µT1,µT2) generating a “seesaw” shape. Parameter values are sampled from: NS(0,0.22), Nk1(1.8,0.122),

Nk2(1.08,0.122), Ni1(13.5,0.132), Ni2(14,0.132). (C) When µS> 0, the indSRs again more-or-less rotate around (µi1, µi2), but this is now closer

to the origin than the bivariate mean of the popSR (µT1, µT2) generating a “speedometer” shape. Parameter values are sampled from:

NS(1,0.22), Nk1(1.8,0.122), Nk2(1.08,0.122), Ni1(11.7,0.052), Ni2(12.92,0.052). (D) Conversely, when µS< 0, the indSRs more-or-less rotate

around (µi1, µi2), but this is now farther from the origin than the bivariate mean of the popSR (µT1, µT2), generating a “broomstick” shape.

Parameter values are sampled from: NS(-1,0.22), Nk1(1.8,0.122), Nk2(1.08,0.122), Ni1(15.3,0.052), Ni2(15.08,0.052). (B’,C’, D’) The popSRs for

the three patterns of indSR (B, C, D) all have the same slope and intercept (OLS, MA, and SMA), and the same variance and covariance

for T1 and T2.
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Table 1. Parameter values used for initial populations.

Pattern of Mean
cryptic indSRs Trait μS σS μk σk μi σi trait size Slope OLS SlopeSMA SlopeMA μk2/μk1

Seesaw 1 (Body) 0 0.2 1.8 0.12 13.5 0.16 13.5 0.529 0.660 0.6 0.6
2 (Wing 0 0.2 1.08 0.12 14 0.16 14

Broomstick 1 (Body) –1 0.2 1.8 0.12 15.3 0.05 13.5 0.529 0.660 0.6 0.6
2 (Wing –1 0.2 1.08 0.12 15.08 0.05 14

Speedometer 1 (Body) 1 0.2 1.8 0.12 11.7 0.05 13.5 0.529 0.660 0.6 0.6
2 (Wing) 1 0.2 1.08 0.12 12.92 0.05 14
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Figure 3. Selection regimes. (A) Directional selection; (B) Proportional selection; (C) Correlational selection; (D) Stabilizing selection. Only

positive forms of selection are shown. Details of the methods used to identify selected individuals are detailed in Supporting Information.

Black points = selected individuals, gray points = unselected individuals.

For each starting population of 1000 individuals we applied

eight selection regimes (D+/-, P+/-, C+/-, St, and K+) for ten

generations. Under truncated selection regimes, the intensity of

selection at each generation is a function of the proportion of se-

lected individuals (Falconer and Mackay 1996; Lynch and Walsh

1998). Consequently, we selected the same proportion of indi-

viduals (50%) at each generation to allow comparisons of the re-

sponse across generations and among selection regimes. At each

generation we recorded: the parameter values of each individual

in the population, the selection differential and selection intensity

on each parameter, and the slope (α) and intercept of the pop-

ulation scaling relationship using ordinary least squares (OLS),

major axis (MA), and standardized major axis (SMA) regression.

There has been much debate over which type of regression to

use in studies of allometric relationships (e.g., Warton et al. 2006;

O’Connor et al. 2007; Al-Wathiqui and Rodrı́guez 2011; Taskinen

and Warton 2011; Hansen and Bartoszek 2012). Our model pro-

vides additional insight into this controversy, which we discuss

in the Supporting Information. To construct confidence intervals

around changes in mean parameter values and changes in slope

and intercept of the popSRs, we repeated the analysis 1000 times,

initiating each starting population using the same initial parameter

distributions (Table 1).

The evolutionary algorithm was applied in R, and performed

at Michigan State University’s High Performance Computing

Facility. The scripts used to run the algorithm are available
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at Dryad (http://dx.doi.org/10.5061/dryad.1k17n). All data were

subsequently analyzed using R or JMP.

RESPONSE TO SELECTION

Figure 4A–F shows how the slope of the popSR (αOLS, αMA, and

αSMA) and the mean slope of the cryptic indSRs (μk2/k1) in each

population class responds to different positive forms of direct,

proportional, correlational, and stabilizing selection. These selec-

tion regimes have different effects on the slope of a population’s

static allometry. Further, the response to a particular selection

regime depends strongly on the pattern of cryptic individual static

allometries in the population. Indeed, the same selection regime

can have opposite effects on the allometric coefficient for popu-

lations with ostensibly identical popSRs but different patterns of

indSRs (e.g., Fig. 4A′-C′ vs. A′′-C′′).
There are several reasons why different selection regimes

may vary in their effect on the slope of the popSR. One trivial

explanation is that, even though the same proportion of individu-

als is selected each generation, the regimes may impose different

realized selection intensities and therefore vary in their impact

on the popSR. To standardize the selection pressure across selec-

tion regimes, we plotted the relationship between the MA slope

of the popSR against the realized cumulative selection intensity

under each selection regime (Fig. 5). These plots indicate that

the different selection regimes had more-or-less the same inten-

sity. Differences in selection intensity does not, therefore, explain

differences in response to selection among regimes.

A more interesting possibility is that the selection regimes

vary in the degree to which they target the developmental mech-

anisms that regulate the slopes of the individual cryptic scaling

relationships that determine the slope of the population level scal-

ing relationship. As discussed above, relative insulin-sensitivity

k2/k1 is the biological factor that ultimately generates the corre-

lation between the size of T1 and T2, the population average of

which is captured by the slope of the population static allome-

try. Unsurprisingly, we found that selecting directly on individual

k2/k1, (i.e., the slope of the indSR), generates the most rapid re-

sponse in the slope of the popSR (Fig. 4G, G,’ and G”). However,

in biological organisms individual k2/k1 is phenotypically cryptic.

Consequently, selection can only directly target aspects of the size

of T1 and T2 (e.g., correlational selection on their combination or

direct selection on the size of T2). It follows that selection regimes

targeting characters tightly correlated with k2/k1 should be more

effective at changing the slope of the popSR than should regimes

focused on characters weakly correlated with k2/k1. To test this,

we examined the relationship between k2/k1 and the targets of se-

lection in our three starting population classes. In support of our

prediction, we found that the tighter the correlation (r2) between

k2/k1 and a selected character, the greater the effect of selection

on the slope of the popSR (Fig. 6). The character most tightly

correlated with an individual’s k2/k1 varies among the three start-

ing distributions of indSRs, which explains why the same selection

regime can have very different effects on the slope of the popSR

among population types.

Our model assumes a linear reaction norm between (log)

trait size and the environmental regulator of size (level of insulin-

signaling). However, the reaction norm for other environmental

regulators of size may be curve-linear (Shingleton et al. 2007;

Shingleton et al. 2009). We tested whether the results of our anal-

ysis are robust to other types of reaction norms by employing

a second nonlinear model to the relationship between trait size

T and environmental factor E (see Supporting Information). Al-

though this modified model produces nonlinear individual trait

reaction norms, it nevertheless generates linear indSRs (Fig. S1),

as observed for nonlinear reaction norms in Drosophila (see Fig. 3

in (Shingleton et al. 2007)). We employed our evolutionary algo-

rithm to evolve these populations under different selection regimes

as described above. The results of our analysis (Fig. S2) indicate

that linear popSRs generated from nonlinear reaction norms re-

spond in the same way to selection as popSRs generated from

linear-reaction norms, and that this response also depends on the

underlying pattern of indSRs. Thus, our finding that the pattern

of indSRs in a population determines how the popSR responds

to selection may be a general characteristic of the evolution of

environmental static allometries, regardless of the developmental

mechanisms generating them.

Discussion
The evolution of morphology has long been associated with the

correlation of traits within an organism. In the early 19th century,

Cuvier recognized that traits were not independent entities, rather,

they were mutually dependent to produce a functioning whole.

His “Law of Correlation” was a formalization of his observations,

and stated that the interdependency between traits precluded a

single trait from changing as the organism could only function

as a complete unit (Cuvier 1812). Darwin relaxed the notion

of organisms as immutable units, but nevertheless recognized

that traits are often correlated with one another and have the

potential to constrain morphological diversity. Darwin defined the

“correlation of growth” as changes in one trait that modify another

trait, due to the tight organization of an organism’s growth and

development (Darwin 1859). Building on the relationship between

traits, Thompson (1917) recognized that changes in the size of

one trait relative to another underlies morphological diversity and

described this transformation mathematically. Finally, Huxley and

Tessier (1936) modeled the size relationship between traits using

the allometric equation, and explicitly linked this relationship

to the processes that control growth. Thus the modern study of

scaling relationships was established.
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Figure 4. The response of the allometric coefficient to selection in three different populations. (A, A’, A”) The three starting populations

share the same popSR slope (OLS, MA, and SMA), the same bivariate mean and the same variance and covariance for logT1 and logT2.

(B, B’, B”) The pattern of cryptic indSRs for the three populations are “seesaw,” “broomstick,” and “speedometer.” (C–F”) The response of

the popSR allometric coefficient to different forms of selection varies considerably among populations. (G–G”) In all three populations,

direct selection on individual k2/k1 had the most rapid effect on the slope of the popSR. Points are mean allometric coefficient (OLS, MA,

SMA) and µk2/k1 of 1000 replicate populations across generations. Error bars (partially hidden) are 95% confidence intervals of the mean.

Despite the centrality of trait correlations and scaling rela-

tionships to the evolution of morphology, the modes of selection

that alter the intercept, and, particularly, the slope, of morpholog-

ical scaling relationships remain controversial. This controversy

has been confounded by experimental evolution studies that pro-

duce equivocal results when selection has ostensibly targeted the

slope of a population directly (Egset et al. 2012; Bolstad et al.

2015; Stillwell et al. 2016), but substantial change of the slope

when selection targets individual traits such as absolute or relative

trait size (Robertson 1962; Wilkinson 1997; Tobler and Nijhout

2010) or when developmental manipulations are applied (Tang

et al. 2011). Our model reveals why this may be. Specifically, our

model demonstrates that the response of a population-level scal-

ing relationship depends on the pattern of cryptic individual-level

scaling relationships in the population. This pattern determines

the extent to which a given form of selection targets particular de-

velopmental mechanisms that regulate the slope of the individual

cryptic scaling relationships, which in turn give rise to the individ-

ual phenotypes on which the population level scaling relationship

is based. These mechanisms control the relative sensitivity of

traits to changes in the environmental factors (nutrition in our

model) that generate the scaling relationship (k2/k1) and govern

which phenotype is expressed along the cryptic individual scal-

ing relationship in a given environment. Importantly, populations

may share the same scaling relationship, yet harbor very different

underlying patterns of individual-level scaling relationships. Con-

sequently, populations that are ostensibly phenotypically identical

may evolve very differently under the same form of selection.

The observation that individual genotypes have their own

scaling relationship, although intuitive, is one that has been largely

overlooked by previous studies on allometry. In those few studies

where it has been considered, assumptions about the pattern of

indSRs in the population may have been incorrect. Specifically,

studies that attempted to alter the slope of a morphological scaling

relationship through correlational selection explicitly or implicitly

assumed that individuals in the upper-right and lower-left corners

of a bivariate distribution of log(X) on log(Y) have a high indSR

slope (Egset et al. 2012; Bolstad et al. 2015; Stillwell et al. 2016).

That is, it was assumed that the pattern of cryptic indSRs was a

“seesaw” (Fig. 2B). This need not be the case, which may account
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for the absent or erratic response to selection in these studies. In-

deed, artificial selection experiments that have applied directional

or proportional selection to single traits have generally generated

the most consistent changes in allometric slope (e.g., Robertson

1962; Wilkinson 1997; Tobler and Nijhout 2010). This suggests

that the pattern of cryptic indSRs, at least for the focal traits in

these studies, was not the “seesaw” but rather was the “speedome-

ter.” In general, absent knowledge of the indSR pattern, prediction

of the expected response of a population to a particular form of

selection on scaling is difficult. Our model therefore provides a
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compelling argument for measuring the pattern of indSRs in a

population before exploring how that population responds to se-

lection on the allometric slope. To generate indSRs it is necessary

to rear genetically identical individuals across an environmental

gradient. For organisms where it is easy to generate isogenic lines

(e.g., Drosophila, Stillwell et al. 2011), or for clonal organisms

(e.g., aphids, Stern et al. 1996), this is straightforward. However,

for sexually reproducing nonmodel organisms, it may be nec-

essary to use members of sibships as a proxy for genotype to

estimate indSRs.

The observation that the distribution of cryptic individual

scaling relationships can profoundly affect the response to selec-

tion raises the question: What causes a population to exhibit the

“seesaw,” “speedometer,” or “broomstick” pattern of indSRs in

the first place? Experimental manipulation of genes in the insulin

signaling pathway in Drosophila suggest some candidate mech-

anisms. Variation in expression of the insulin receptor (Inr) in

the wings of developing flies produces the “speedometer” pat-

tern of wing-body indSRs (Fig. 2A, Shingleton and Tang 2012)

whereas variation in expression of the forkhead transcription fac-

tor (FOXO) produces the “broomstick” (Fig. 2B, Shingleton and

Tang 2012). These findings fit well with our model. Inr is a pos-

itive growth regulator and isogenic lineages that differ in expres-

sion of Inr in the wings vary in the extent to which nutritionally

induced increases in Inr activity can raise wing growth rate above

the intrinsic rate. In the context of our model, S therefore be-

comes the level of Inr activity. Because Inr is a positive growth

regulator, S can only be positive and μS > 0. Consequently, the

pattern of indSRs among genotypes that vary in their sensitivity

to this positive growth regulator is the speedometer. In contrast,

FOXO is a negative growth regulator and the same arguments

explain why variation among genotypes in wing-specific FOXO

expression generates the broomstick pattern of indSRs. More gen-

erally, the pattern of inSRs in a population will reflect the extent

to which genotypes vary in their sensitivity to positive versus neg-

ative environmentally regulated growth factors: in a population,

variation in sensitivity to positive growth factors will produce the

speedometer pattern of indSRs whereas variation in sensitivity to

negative growth factors will generate the broomstick pattern of

indSRs.

There has, historically, been much debate over the biologi-

cal meaning of the parameters of Huxley and Tessier’s allomet-

ric equation, that is the slope and intercept of linear morpho-

logical scaling relationships plotted on a log–log scale (Huxley

1950; White and Gould 1965; Gayon 2000). Our model undoubt-

edly simplifies the biological processes that underlie variation in

trait size and that generate morphological scaling relationships

(Nijhout 2011; Nijhout and German 2012). Nevertheless, the

model makes explicit the types of developmental mechanisms

that regulate Huxley and Tessier’s parameters—insulin-sensitivity

and organ-autonomous intrinsic growth rates for the slope and

intercept, respectively—hypotheses that are supported by an in-

creasing number of developmental studies (Cheng et al. 2011;

Tang et al. 2011; Emlen et al. 2012; Refki et al. 2014; Refki and

Khila 2015). The model also addresses the problem of delineat-

ing between changes in the slope of the scaling relationship and

changes in the intercept (Egset et al. 2012; Bolstad et al. 2015;

Stillwell et al. 2016). The model suggests that shifts in the in-

tercept independent of the slope can occur through changes in a

trait’s intrinsic growth rate (i in eq. 10). The malleability of al-

lometric intercepts is supported by numerous artificial selection

experiments (Wilkinson 1997; Emlen 1996; Frankino et al. 2005;

Frankino et al. 2007; Egset et al. 2012) and developmental manip-

ulations of the insulin signaling pathway (Shingleton et al. 2005;

Tang et al. 2011). In contrast, the model suggests that changing the

slope independently of the intercept is much more problematic.

This is because the mechanisms that affect the slope of a scal-

ing relationship, insulin-sensitivity (k in eq. 10), pleiotropically

affect the intercept, as shown in equation (10). This means that

for selection to alter the slope of an allometry without altering

the intercept, the effect of any change in insulin-sensitivity (k) on

intercept needs to be countered by selection on intrinsic growth

rate (i). This may explain why the response to correlational se-

lection on the slope alone has been erratic (Egset et al. 2012;

Bolstad et al. 2015; Stillwell et al. 2016): selection must target

both mechanisms at the same time, and they must interact in a

specific, body-size dependent, manner.

The model allows us to predict the pattern of indSRs and

the genetic targets of selection in a population, given the ob-

served response of scaling to a known form of selection. For

example, the pleiotropic effect of insulin-sensitivity on slope and

intercept likely reveals why directional or proportional selection

can lead to the evolution of exaggerated hyperallometric traits

often subject to sexual selection sexual selection (Green 1992;

Emlen & Nijhout 2000; Koric-Brown et al. 2006; but see Bon-

duriansky, 2007). Exaggerated traits are those that exhibit an

extreme increase in size relative to the ancestral state, such as

the horns of male rhinocerous beetles (Enrodi 1985), the eye-

stalks of male stalk-eyed flies (Wilkinson 1997) and the antlers

of male deer (Gould 1974). In many cases, such traits exhibit

hyperallometric scaling, making them sensitive indicators of in-

dividual condition and hence informative when selecting a mate

(Emlen and Nijhout 2000; Kodric-Brown et al. 2006). Exag-

gerated hyperallometric traits are thought to be more insulin-

sensitive than traits that scale isometrically with body size (Shin-

gleton et al. 2008; Emlen et al. 2012). This means that the

same developmental mechanism—increased insulin-sensitivity

(k in our model)—both exaggerates traits and causes them

to be hyperallometric. Consequently, sexual selection for trait

exaggeration can result in an indirect increase in signal reliability

via the evolution of hyperallometry, creating positive feedback for

greater trait exaggeration and increased hyperallometry (Emlen
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et al. 2012). However, morphological diversity is replete with ex-

amples of enlarged traits that are not hyperallometric, and so it

is unclear why sexual selection should target insulin-sensitivity

specifically (Shingleton and Frankino 2013). Our model predicts

that exaggerated traits have the speedometer pattern of indSRs, as

directional or proportional selection for increased trait size from

this indSR distribution causes rapid, indirect evolution of hyper-

allometry (Fig. 4). Further, the model predicts that proportional

or directional selection regimes that generate trait hyperallometry

will target the mechanisms that increase a trait’s sensitivity to

positive growth regulators, perhaps by increasing expression of

Inr.

Conversely, if we know the genetic targets of selection we

can use our model to predict the form of selection that gener-

ated a change in scaling. For example, hypoallometry of the male

genitalia in Drosophila is a consequence of an organ-autonomous

reduction in expression of FOXO, a mechanism that generates

the broomstick pattern of indSRs (Shingleton and Tang 2012).

Such patterns generate hypoallometry most efficiently through

positive proportional or directional selection on trait size (Fig. 4).

Consequently, the model predicts that genital hypoallometry is a

consequence of positive directional or proportional selection on

genital size. There is some evidence that this is the case: hypoal-

lometric genital traits are under positive directional selection in

the water strider Aquarius remigis (Bertin and Fairbairn 2007).

Importantly, this prediction contrasts with existing hypotheses

that invoke stabilizing selection on genital size to explain geni-

tal hypoallometry (Eberhard et al. 1998; Eberhard 2009), a form

of selection that generates a weak evolutionary response in our

model (Fig. 4).

Our model considers linear static allometries where size vari-

ation results from a single environmental factor. The model can

easily be modified to consider alternative patterns of trait growth

that may generate nonlinear morphological scaling relationships

(Nijhout 2011), and to incorporate multiple environmental factors,

where each trait has a unique sensitivity to each factor. Further,

while our model addresses the evolution of scaling relationships

generated through environmental variation (called environmen-

tal static allometries), it can be readily adapted to consider the

evolution of scaling relationships generated through genetic vari-

ation (called genetic static allometries) (Shingleton et al. 2007),

by having the value of S inherited rather than sampled anew each

generation. Because genetic static allometries reflect pleiotropic

relationships among traits, such a modification would allow the

model to be applied to the evolution of pleiotropy. There is an ex-

tensive literature on the evolution of pleiotropy (see Pavlicev and

Cheverud 2015 for review), an important component of which

is epistatic pleiotropy, where the pleiotropic effects of varia-

tion at one locus on multiple traits varies with genetic back-

ground (Wolf 2005). Epistatic pleiotropy can cause variation in the

genetic correlations among traits across genotypes, and thus gen-

erate a population of cryptic genetic static allometries analogous

to the population of cryptic environmental static allometries de-

scribed by our model (Pavlicev et al. 2008). Variation in environ-

mental static allometries occurs when different traits vary in their

response to the gene-by-environment interactions that generate

variation in phenotypic plasticity (Shingleton et al. 2007). Simi-

larly, variation in genetic static allometries occurs when different

traits vary in their response to the gene-by-gene interactions that

generate epistasis (Pavlicev et al. 2008), a phenomenon called dif-

ferential epistasis (Cheverud 2001; Cheverud et al. 2004). Several

studies have identified loci that influence the pleiotropy between

traits and underlie differential epistasis, referred to as relationship

QTLs (rQTLs) (Cheverud et al. 2004; Pavlicev et al. 2008), and

the evolution of these rQTLs has been modelled mathematically

(Pavlicev et al. 2011; Watson et al. 2014). Although these rQTL

models have been applied to different evolutionary questions than

our model, there are interesting and important parallels among all

these models that warrant future consideration.

Despite its simplicity, the basic model developed here clearly

demonstrates the importance of considering the developmental

origins of the trait variation subject to selection. Traditional ap-

proaches to modeling the evolution of allometries that focus on

patterns of trait and body size covariation (Bonduriansky and Day

2003; Pelabon et al. 2013) would predict that the three populations

shown in Figure 2B′, C′ or D′ would have the same response to

a given form and intensity of selection. This is because such ap-

proaches do not consider the actual target of selection—the mech-

anisms underlying trait and body size expression that produce the

genotype-specific indSR–-but instead consider only the observed

phenotype expressed by each individual. Thus, these approaches

could not predict, or explain, the responses to selection observed in

Figure 4.

In conclusion, our model provides a fresh approach to under-

standing the evolution of morphological scaling relationships, by

explicitly addressing how selection will act on the developmental

parameters known to regulate growth and thereby determine trait

allometries. The key insight is that each genotype encodes a cryp-

tic individual scaling relationship (indSR), and variation in the

developmental parameters among individuals generates specific

patterns of cryptic indSR in a population. Although only part of

the indSR is exposed to selection, the pattern of these indSRs in

a population determines how the population-level scaling rela-

tionship will respond to selection. Thus, populations that differ in

their distribution of indSRs will respond quite differently to the

same pattern of selection, even if the populations are phenotypi-

cally indistinguishable. By explicitly linking patterns of selection

acting on a population with the developmental targets of that se-

lection among individuals, our model allows one to predict how

morphological scaling relationships evolve, and to explain how
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patterns of scaling relationships common among taxa, such as

hyperallometric sexually selected traits, came to be. The model

therefore provides a new and rich theoretical framework for future

empirical research on the evolution of morphology.
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